Computers

and electronics
Computers and Electronics in Agriculture in agriculture

SE] ER 27 (2000) 107-125

www elsevier.com/locate/compag

AppBuilder for DSSTools. an application
develdpment environment for developing
decision support systems in Prolog

Geneho Kim 2, Donald Nute **, H. Michad Rauscher ®,
David L. Loftis ®

2 Artificial Intelligence Cenrer, Room }] 1 Boyd GSRC, The University of Georgia, Athens,
GA 30602, USA .
b Bent Creek Experimental Forest, USDA Forest Service, Asheville, NC 28801, USA

Abstract

A programming environment for developing complex decision support systems (DSSs)
should support rapid prototyping and modular design, feature a flexible knowledge represen-
tation scheme and sound inference mechanisms, provide project management, and be
domain-independent. We have previously developed DSSTools (Decision Support System
Tools), a reusable, domain-independent, and open-ended toolkit for developing DSSs in
Prolog. DSSTools provides modular design, a flexible knowledge representation scheme, and
sound inference mechanisms to support development of any knowledge based system
components of a DSS. It also provides tools for building the DSS interface and for
integrating other non-Prolog components of a DSS such as simulation models, databases, or
geographical information system, into a multi-component DSS. DSSTools does not provide
project management, and its complex syntax makes rapid prototyping difficult. AppBuilder
for DSSTools is a GUI-based application development environment for developing DSSs in
DSSTools that supports rapid prototyping and project management. AppBuilder’s easy-to-
use dialogues for managing and building knowledge based and top-level control components
of a DSS free developers from having to memorize complex syntax and reduce devel opment
time without sacrificing the flexibility of the underlying toolkit. AppBuilder has been used to
develop the Regeneration DSS, a system for predicting the regeneration of southern
Appaachian hardwoods. AppBuilder is an application development environment for both
prototyping and developing a complete DSS. © 2000 Elsevier Science B.V. All rights
reserved.

* Corresponding author.

0168-1699/00/3 + see front matter © 2000 Elsevier Science B.V. All rights reserved.
Pli: S0168-1699(00)00101-0

108 eral. / Computers and Electronics in Agriculture 27 (2000) 107-125

Keywords: Decision SUPPOrt systems; Knowledge based systems; Programming environments; Prolog

1.Introduction

A decison support sysem (DSS) is an interactive and flexible sysem that
facilitates improved decison making, by integrating ingghts of decison makers as
part of the decison making process (Schmoldt and Rauscher, 1996). The goa of a
DSS is to amplify the power of decison makers without usurping their right to use
human judgment and make choices. A DSS atempts to bring together the
intdllectud flexibility and imegination of humans with the speed; accuracy, and
tirdlessness of the computer. Rauscher (1999) provides a comprehensive review of
DSS for ecosystem management in the US.

Traditiond software engineering is a well-developed process for systemétically
designing a software product for well-behaved problems — problems that have
known agorithmic solutions. Most DSSs in naturd resource management are not
well-behaved problems. Ambiguities, conflicts, internad inconagencies, lack of
organized solution drategies, inditutiona shock and confusion, and lack of scien-
tific understanding al contribute to make natural resource management problems
extremely complex. Designing DSSs for such problems can seldom be approached
usng classcd software engineering methods.

The rapid prototyping approach to software engineering was developed for
domains that have the above characteridtics, i.e. ‘when the requirements for the
system or the decison ‘making process cannot be fully known in advance (Press-
man, 1992). Usng prototyping methodology, an initiad system that focuses on user
interaction is quickly developed and enhanced based on evduation by the user. This
process of refinement is repested until the resulting system performs satisfactorily
(Schmoldt and Rauscher, 1996).

A programming environment that supports rapid prototyping of decison support
systems for complex domains is needed. Such a programming environment should
feature:
short development and learning time;
flexible knowledge representation schemes and sound reasoning methodologies,
modular design dlowing incrementd refinement by parts,
support for project management;
capability to incorporate exigting legacy programs and hypertext; and
a domain-independent environment for developing domain-specific systems.
Short development time and a flat learning curve are the essence of a rapid
prototyping environment. A DSS that preserves trusworthy decison-making
throughout severd modifications should employ a flexible knowledge representa-
tion scheme that can handle possible changes in the structure of the data. Inference
mechanisms based on sound theoretical principles are a0 essentid. Modular
desgn and development is important because some stages of system improvement
involve only parts of the sysem. Without project management, an inordinate

/ Computers and Electronics in Agriculture 27 (2000) 107-125 109

amount of time can be spent managing various files and components in a project.
This is dso important for software maintenance, particularly as the lifetime of
software systems increases. Many decison support systems need to work with
exiding legacy software such as smulation modds and geographic information
gysems, and with exiding hypertext documents such as Windows hep files.
Therefore, the programming environment must provide tools for building interfaces
with these systems and documents. Unlike expert system shells whose programs can
be executed only within the shdls, the desired programming environment must be
able to generate domain-specific multi-component gpplications for a wide range of
domains. To emphasize the application generation capability, we cdl such a
programming environment an agpplication development environment {ADE).

AppBuilder for DSSTools (AppBuilder for short) is a GUI-based ADE for
developing the top-level control structure and knowledge-based systems component
of decison support systems in any doman. AppBuilder is built on top of
DSSTools, a Prolog toolkit for DSS development (Nute et d. 1995; Kim et 4.,
2000). AppBuilder facilitates rgpid prototyping of decison support sysems by
providing easy-to-use dialogues for managing and building knowledge-based com-
ponents of a system and integrating these with other components written in Prolog
or some other programming language. Using AppBuilder, developers can reduce
devdopment time and diminate syntax errors without sacrificing the flexibility of
the underlying toolkit, DSSToals. In this paper, we briefly introduce DSSTools and
its limitations, review the relevant literature, and then describe the AppBuilder
ADE. This paper does not discuss tools in AppBuilder in detall. A detaled
description of AppBuilder tools can be found in Kim (1999).

2. DSSTools and its limitations

DSSToadls is a toolkit based on a blackboard architecture for developing decision
support systems with a mgjor knowledge-based component in Prolog. More infor-
mation about DSSTools can be found in Nute et a. (1995) and Kim et a. (2000).
For detalled discussion of the Prolog programming language, in which DSSToals is
written, consult Covington et a. (1997). Developers can take advantage of a suite
of tools avallable in DSSTools by usng it as it is or modifying it to suit their needs,
thus reducing development time over developing a system from scraich in Prolog.
The modifiability of DSSTools provides a flexibility missng from the typicd
commercid expert sysem or other DSS development tool. DSSTools is open-
ended, meaning tha the current suite of tools can be continuoudy enhanced and
new tools can be added.

DSSTools is designed to support development of multi-component DSSs that
combine knowledge based systems and other kinds of DSS components usng a
blackboard architecture. One or more semi-autonomous agents are developed that
have access to the information on the blackboard and can post new information to
the blackboard. These agents are cdled domain control modules (DCMs). A sngle
DCM might provide an interface with the user, implement a knowledge-based

110 G. Kim et al. /Computers and Electronics in Agriculture 27 (2000) 107- 125

sysem, or manage another kind of DSS component developed in Prolog or some
other programming language. DCMs can be independently developed, executed,
and tested. This modular gtructure dlows incrementd refinement by pats — the
pats being DCMs. DCMs do not communicate with each other directly; they
communicate through shared data on the blackboard. DSSTools provides
reusable codes to maintain the blackboard and to provide the DCMs with the
opportunity to interact with the blackboard.

DSSTools provides a rich, flexible fact structure that includes an attribute-ob-
ject-vdue (AQV) triple, an inference index that may be used to represent degree
of confidence, and the source of a fact. Because there are no redrictions on the
vaues and the uses of the inference indexes and sources, they are available to
support different inference mechanisms such as fuzzy logic or reasoning with
confidence factors. DSSTools provides backward-chaining and forward-chaining
inference engines, for use with backward-chaining rules and forward-chaning
rules, respectively. These rule types and inference engines form a sound and
widely used standard reasoning mechanism.

DSSTools dso provides interface tools for gathering information from usars or
externad programs. DSSTools supports sx types of GUI didog screens for han-
ding different types of input. These didog screens ae cdled query screens
because they provide information that the sysem needs by querying the user.
DSSTools dso features tools for interfacing with foreign components (smula
tions, spreadsheets, geographicd information systems, etc.) and the Windows
help sysem. A specific page in a Windows help file can be linked to a particular
rule or a specific query screen. Using the DSSToals interface tools, a GUI didog
screen with a number of input fields can be generated with less than ten lines of
code.

Although DSSTools provides many enhancements to the native Prolog pro-
gramming environment, the toolkit ill fals to provide al the festures of an
ADE described above. Developers must type al components of the DSSTools
gpplication by hand. Even for a moderately Szed application, the amount of
code one must manage is too large to handle without assstance of project
management tools. To ensure that a DSSTools application works properly, we
need to test components of the application. Both project management and easy
component testing are missing in LPA Win-Prolog, the software environment for
developing applications in DSSTools (LPA Win-Prolog, 1996). DSSTools users
must possess a leest a moderate understanding of Prolog programming and
learn the complex syntax for each tool in the toolkit (Kim et d., 2000). This
process takes time, for learning as well as software development, and does not
protect the developer from making frequent syntax errors. Furthermore, to use
the powerful user interface routines in DSSTools, one must master the complex
syntax of each interface type. The degp dructured syntax dso makes modifica
tion of the interfece difficult. AppBuilder was created as an ADE for DSSTools
to mitigate some of the weaknesses inherent in the toolkit approach to develop-
ing DSSs.

Electronics in - Agriculture 27 (2000) 107-125 111
3. Related work

Previoudy developed toolkits and programming tools provided indght for deve-
opment of AppBuilder. Micro Interpreter for Knowledge Engineering (MIKE)
(Eisenstadt and Brayshaw, 1990a,b), a knowledge engineering toolkit for building
expert systems in Prolog using the frame knowledge representation structure, is very
close to DSSToals in terms of functiondity. One notable difference is that MIKE
can be used with any Prolog programming environment whereas AppBuilder
requires a particular Prolog programming environment, LPA Win-Prolog. Karsai
(1995) introduces a configurable modd-based visud programming environment
(VPE) that can be configured for developing systems in various domains. Koseki et
a. (1996) propose an architecture for a VPE for hybrid expert systems. Their visud
environment pointed out the dedrability of a visud programming tool for develop-
ing what we call domain control modules. Other systems we reviewed demondirated
that approaches we have taken are not unique to DSSTools and AppBuilder. Like
DSSTools, THESEUS + + , an object-oriented toolkit for developing high leve
user interfaces for 2.5D grephics, separated problem solving knowledge from
GUI-rdated code (Dingeldein and Lux, 1993). Like AppBuilder, Kim's QA Builder
(Kim, 1996) features visud editors developed for a particular kind of knowledge
representation scheme. Like AppBuilder, FIELD (Friendly Integrated Environment
for Learning and Development) (Reiss, 1995) provides graphica interfaces. for
exiging programming tools that enhance the functiondity of the origind tool. Since
none of these systems meets our requirements for an ADE, we developed a new
programming environment using DSSTools. We chose DSSTools over other toolk-
its, such as MIKE, because it has been used to develop a red-world application
(Nute et d., 1995) and because it satisfies al of our requirements except short
development time and project management support.

4. AppBuilder for DSSTools

AppBuilder is an ADE for DSSTools that supports short development time and
project management. AppBuilder reduces development time by providing easy-to-
use GUI tools to manage and develop components of a system and by freeing
developers from having to memorize and learn complex syntax of DSSTools
features.

Fig. 1 depicts the relationship between AppBuilder tools and DSSTools compo-
nents. White boxes in the figure represent AppBuilder tools and gray boxes
represent typical components of a DSS developed using AppBuilder. Gray boxes
gppearing to the left of the dotted vertical line ae non-DSSTools pats of the
sysem. These will typicdly incdlude smulations, databases, geographic information
sysems, or other DSS components besides the knowledge-based components
developed usng AppBuilder. Each AppBuilder tool is linked to a DSSTools
component related to that tool. The Project Window encloses adl DSSTools
components to emphasize that it is used to manage adl DSSTools components.

112 / Computers and Electronics in Agriculture 27 (2000) 107-125

AppBuilder provides two levels of project management functiondity: project-
levd and component-levd. Project-levd’ functiondity concerns manipulaing
projects, which includes creating a new project and renaming an existing project
thus dlowing developers to save different versons of a project in different loca
tions. It aso includes adding files to and removing files from projects. Component-
levd functiondity involves manipulating components contaned in a project.
Examples of components are DCMs, knowledge bases, and user interface screens.
The separation of these two levels of functionality enables developers to focus ther
attention either on the project-level as a whole or on the design and implementation
of one component of an agpplicaion a a time. In this way, whether to use the
bottom-up or top-down software development dtrategies is left to the discretion of
the developer.

Project-level functiondity is provided by the Project Window (Fig. 1). The
Project Window is essentialy the command center for the DSS software devel oper.
In AppBuilder, a project is a set of files that make up a DSSTools application. A
DSSTools gpplication must have one or more domain control module (DCM) files
and exactly one main file that contains gart-up code. Optiondly, an application

Non DSSTools
Components

Fig. 1. AppBuilder Tools and DSSTools components.

QUERY FACT RULE
BUILDER BUILDER BUILDER
QUERY FACT RULE
MANAGER MANAGER MANAGER

T

PROJECT WINDOW

J

ONILS3L Y04 MOONIM QYvVOaMIvg

DSSTools

Components

G. Kim et d. / Computers and Electronics in Agriculture 27 (2000) 107-125 113

may contain one or more knowledge base files, one or more domain utility (DUT)
files, Windows help files, and other non-Prolog components that are not tracked by
AppBuilder. Managing projects with less than ten files by hand without a GUI tool
is not difficult. However, when the number of files in a project grows larger than
that, the task of managing a project gets out of hand and AppBuilder becomes
increesingly more vauable.

Another important project-level feature of AppBuilder is project verification.
AppBuilder implements a strategy not just for syntactic error checking, but dso for
consstency. In consstent projects, no two rules or queries have the same name, dl
files actudly exig, and a DCM that terminates the sysem exists. Rather than
reinventing the whed, AppBuilder uses the built-in syntax checking and debugging
cgpabilities of LPA Win-Prolog.

Component-level functiondity is provided by component managers and builders
(Fig. 1). The component managers in AppBuilder are the Fact Manager, the Rule
Manager, and the Query Manager. Component managers allow us to review, add,
modify, or delete components in an gpplication. For some of these functions the
component managers cal component builders, specidized didog screens for crest-
ing and modifying sysem components. There is a Fact Builder, a Rule Builder, and
a Query Builder. We will see screen images for several of the manager and builder
didogs when we wak through the development of a DSS using AppBuilder later in
this paper. To reduce the learning time for the user, AppBuilder’s managers have a
uniform ‘look-and-fed’. Builders, on the other hand, are more ditinctive because
they must ded with completely different types of components.

5. Designing the Regeneration DSS

An example will illusrate how AppBuilder can be used to deveop a fully
functioning knowledge-based DSS. To concentrate on the functiondity of App-
Builder, this sample gpplication does not include any non-DSSTools components.
Loftis (1990) describes a conceptua modd for predicting the amount and species
composition of regeneration for southern Appaachian hardwood forests based on
the initid floristic compostion theory of forest ecology. This theory dates that the
individuds of species that form the dominant forest canopy 10 years after a heavy
disturbance event come from the initial load of propagules present on the Ste prior
to the disturbance. The Regeneration DSS requires as input the number, size, and
species of regeneration propagules prior to a disturbance event. The output from
the regeneration DSS is the number, size, and species of forest trees present on the
ste 10 years following the heavy disturbance event. AppBuilder was used to
develop the regeneration DSS and Dr David Loftis, Principd Siviculturdigt with
the USDA Forest Service's Bent Creek Experimental Forest in Asheville, NC,
performed the role of domain expert.

Since the input and output requirements for the Regeneration DSS were
well known from the beginning, the mgor problem definition work concentrated
on the identification of doman control modules, ther functiondity, and ther

114 G. Kim et al. IComputers and Electronics in Agriculture 27 (2000) 107~ 125

1. Stand Data Bd Exit
Input DCM(,

y ,
Cozﬁ\pFEJat:(tion 1. Management 4]___ . Next Action

DM Option DCM | DCM

T 3
v
3. Special 8. FVS Output

Species DCM DCM

v

. 5. output

s |4 t_SpnemeDsCM | Generation &
electio Display DCM

Fig. 2. Domain control modules for the Regeneration DSS.

interrdationships (Fig. 2). We identified eight separate functions that the DSS
would perform, and a DCM was created for each of these functions. The Stand

Data Input DCM runs first and dlows the user to enter new stand data, read an
exiging stand data file, or exit the system. Once data is entered or read, the Rank

Computation DCM computes the rank of each species. The rank of a species is a
measure of its competitive advantage during regeneration. Species ranks are used to

compute the likelihood that a certain species will survive after a heavy disturbance.

The Specid Species DCM asks the user to salect species present in the stand that
are exceptions to the generd Regeneration logic. The Species Sdlection DCM selects
the species that win the competition during regeneration and produce trees in the
overdory. Once the Output Generation and Display DCM generates output in
HTML format and cdls the user's default intemet browser to display it. The Next

Action DCM presents the user with choices. Usars can explore management
options, such as removing trees of a certain Size and species, or send the output of
the system to a file properly formatted for the Forest Vegetation Smulator (FVS),

a growth smulator developed by USDA Forest Service (Teck et al., 1996). These
two options are handled by the Management Option DCM and the FVS Output
DCM. Users can dso exit or andyze another stand data set. A more detailed

description of each DCM and its functiondity will be presented in Loftis e d.

(2000).

The Regeneration DSS does not include rules. Instead, the knowledge base
contains a set of facts recording the ranks of different gpecies An agorithm
implementing the decison process uses information about understory plants present
on the stand prior to the disturbance event, about pecies present in the canopy

G. Kim er al. / Computers and Electronics in Agriculture 27 (2000) 107- 125 115

prior to the disturbance that produce stump sprouts, and abouit trees present in the
surrounding area to predict which trees will survive as members of the eventud
canopy. This adgorithm was written in Prolog and incorporated into the Rank
Computation DCM.
Next, eech DCM was andyzed for user interface screens. We determined that we
would need three query screens. One screen asks the user for a Ste index for the
gand being analyzed. Another asks the user to sdect specid species present in the
gand. The third screen dlows usars to make a sdection among choices that
correspond to the Next Action DCM. The three query screens will be linked to a
previoudy developed Windows hdp file that provides an organized synthess of
knowledge concerning the entire southern Appaachian regeneration domain
(Rauscher and Host, 1990; Rauscher et al., 1997). The Regeneration DSS dso
needed a spreadsheet like input screen to enable users to enter stand data and a
systlem to generate output as an HTML document. Since AppBuilder does not
support such spreadsheets or generation of HTML documents, we built both the
Soreadshest input screen and HTML document generation routines without using
AppBuilder. Fig.” 3 shows the spreadsheet query screen and Fig. 4 shows an
example of output from the HTML report generator displayed using Netscape. We
plan to add the HTML report generator and the spreadsheet query screen to our

Fig. 3. Stand data spreadsheet query screen.

116 eral. / Computers ond Electronics in Agriculture 27 (2000) 107~ 125

- Netscape

Begenerahion Bepont for Stand bey

Fig. 4. An HTML report from the Regeneration DSS.

next verson of DSSTools and AppBuilder; so we developed them to work
independently of any code specific to the Regeneration DSS.

6. Implementing the Regeneration DSS using AppBuilder

Having developed the agpplication design, we were ready to implement the first
prototype. Fig. 5 shows the LPA Win-Prolog console window after AppBuilder is
loaded. Notice that an AppBuilder menu item has been added to the menu bar and
that dl the DSSTools and AppBuilder components have been consulted. The first
sep is to create a new project. When we click on New DSST Project in the
AppBuilder menu, we must provide a name for the new project and choose the
directory in which project files will be saved. Naming the project Regen, the Project
Window is displayed (Fig. 6) showing the name of the man project file (regen.pl)
and an initidly unnamed knowledge base file for the project (untitled.kb). Clicking
on regen.pl in the Project Window, then clicking the Edit button, we are presented
with a text window displaying the newly created main project file (Fig. 7). Notice

G. Kimeral. / Computers and Elecirenics in Agriculture 27 (2000) 107- 125 117

"%ﬁ
1t botide

4
%

Fig. 5. The LPA Win-Prolog console with the AppBuilder Menu added.

Fig. 6. The Project Window with the newly-created Regeneration project.

118 G. Kim et al. / Compurers and Electronics in Agriculture 27 (2000) J07-125

Fig. 7. The main project file for the Regeneration DSS.

that regen.pl aready contains a header where important information about the file
can be placed. If we click the Properties button in the Project Window dialog, we

can provide author names and copyright information. As each new file is added to

the project, a header is automatically crested for the file and the author names and

copyright information are placed in the header. Notice dso that regen.pl contains
some initid code required in any DSSTools man file, dthough mogt of this initid

code is not vighble in this screen image.

After the project is created, we name the initid knowledge base (in this case,
Regenl.kb) and add the DCMs, DSSTools doman utility files (with extenson
.dut), and Windows Help files to be included in the project. A domain utility file
contains domain specific codes used by severa different DCMs. The user may add
these files to the project and develop them one a a time. However, we have found
it helpful to create every DCM file that we think we will need and add code to the
DCM that smply looks for a request for the DCM to act. When such a request is
found on the blackboard, the system displays a message tdlling the. user the DCM
is active. We may aso include code that puts requests on the blackboard for one or
more additional DCMs to act. This dlows us to test the flow of control between the
DCMs before we begin serious development of any single DCM.

The Project Window in Fg. 8 shows a complete lig of dl the files in the
Regeneration DCM. We can click on any DCM file in the list and edit it or test it.
We can aso test the entire gpplication by clicking on the main project file (the one
with the p] extension) and then clicking the Test button. Before testing either an

G. Kim et al. /Computers and Electronics in Agriculture 27 (2000) 107-125 119

individuak DCM or an entire application, a Blackboard Editor didog (Fig. 9)
appears. This alows the user to type in a set of test facts to appear on the
blackboard, to save a set of test facts once entered, or to load a set of previously
saved test facts to the blackboard before starting the DCM or application. This
facilitates modular testing of system components as they are developed.

i Praject Manager REGCHERATION

iregen_util.dut
Regen1.kb.
regeneration.hip
{regeneration.pl
nenoutput.dey

Fig. 8. The Project Window with the complete Regeneration project.

Fig. 9. The Blackboard Editor.

120 G. Kim ez al. / Computers and Electronics in Agriculture 27 (2000) 107-125

Fig. 10. The Fact Manager displaying facts in the Regeneration knowledge base.

Fact M anages:

Fig. 11. The Fact Builder during editing of a fact in the Regeneration knowledge base.

The next step was to use the Fact Manager and Builder tools to write facts to the
Regeneration project knowledge-base file. Figs. 10 and 11 show the Fact Manager
and Fact Builder as they were used to add facts to the Regeneration knowledge
base. This set of facts is used to determine the likelihood that a certain species will
survive after a heavy disturbance. The mgority of the facts added were smilar to

et al. /IComputers and Electronics in Agriculture 27 (2000) 107-125 121

each other, requiring only one or two changes. Thus, we used the ‘clon€ function
of the Fact Manager. With the cloning function, we were able to add more than 90
facts in less than hdf an hour. Without AppBuilder, it would have taken us
condgderably longer including the time to debug any potentid syntax and structurd
errors.

Next, a test input data set was created using the Fact Manager and Fact Builder.
We created a new KB file in the project and added facts to the KB file. After facts
were built, rules would normdly be built, usng the Rule Manager and the Rule
Builder. Since Regeneration uses no rules, this step was skipped. The three required
query screens were created and tested using the Query Manager and the Query
Builder. We linked each query screen to a pecific page in the Regeneration help file
that contains detailed explanation for each screen. Fig. 12 shows one of the query
screens, the Specia Species query screen.

After developing the necessary query screens, we returned to development of the
eight DCMs. We replaced the origind temporary displays in the Stand Data Input
DCM, Specid Species DCM, and the Next Action DCM with the DSSTools query
screens we had developed. We dso developed the spreadsheet query screen that is
cdled by the Stand Data Input DCM. The dgorithms for the Rank Computation
DCM and the Species Selection DCM were added to these DCMs, and the query
screens were removed from al DCMs that would not communicate directly with

Fig. 12. The Special Species query screen.

122 G.Kim ¢t al. /Computers and Electronics in Agriculture 27 (2000) 707-125

the user in the find system We then developed the routines that generate output as
an HTML document. All devdopment of the actud DCMs was done in the
corresponding file text windows like the one in Fig. 6. Since dmogt anything can be
included in a DCM file, there is no DCM builder didog. The entire sysem was
tested from the Project window, again using the Blackboard Window.

As the find gep in the development process, we generated a stand-alone
goplication by dicking the Build Application button from the Project Window.
AppBuilder automaticaly validated the project by conducting various internd
consstency checks before generating the stand-aone application, Because building
the system using the builders and managers diminates syntax errors and because
AppBuilder does not dlow any inconsstent addition or modification of compo-
nents, the Regeneration project was consstent and free of syntactic errors.

7. Discussion

Although no forma, independent evauation has yet been performed, AppBuilder
was evauaed based on our experience of building applications with it. The
evaduation criteria for AppBuilder address two aspects of the sysem: functiondity
and capacity. The evauation criteria regarding the functiondity of the sysem are
identicad to the requirements of an ADE as discussed previoudy. AppBuilder
satidfies dl these requirements. AppBuilder provides a st of didogues to build and
manage various components of a DSSTools gpplication. The Project window
provides project management cgpability, and its testing facility esses modular
design and testing. AppBuilder does not restrict domains for which it can generate
domain-specific gpplications. Although it does not provide an explicit verson
control function, the ability to rename projects can be used to handle different
prototypes and versions. Other requirements are satisfied smply because the
underlying toolkit, DSSTools, satisfies them.

The criteria used to evaluate AppBuilder that address the capacity of an ADE
with respect to its underlying toolkit are:

e Efficiency: how efficient is it to develop a DSSTools gpplication usng the ADE
as opposed to without it?

e Completeness. can an ADE generate dl possble applications that can be built
jus using its underlying toolkit?

AppBuilder is efficent. The amount of time it tekes to learn AppBuilder is no
more than the time taken to learn DSSTools. In fact, usng AppBuilder is a quick
way to learn to use DSSTools. Moreover, developing Regeneration DSS in App-
Builder demondtrated that AppBuilder clearly reduces development time in both the
implementation and testing stages of an gpplication development process. In the
implementation stage, we did not have to learn the complete syntax of DSSTools.
This adone saves time. Furthermore, if we build a query screen using a text editor
and try running it, the probability that it will run properly the fird time is very
smdl due to the complexity of the syntax. The query may not contain Syntax errors
but be improperly dructured. Then the query will not run adthough there are no

G.Kim et al. / Computers and Electronics in Agriculture 27 (2000) 107-125 123

syntax errors. Finding bugs caused by improperly structured DSSTools components
that are legitimate Prolog code normaly consumes significant amounts of resources
because such errors cannot be detected a compile time and because Prolog cannot

find them. If we use the Query builder, however, a query screen will run the first

time dmost dways because AppBuilder ensures that the query is error-free. This is
equally true for facts and rules. Hence, AppBuilder saves sgnificant resources that
might otherwise be used in finding and correcting errors.

The resources spent in the testing stage were aso reduced. Most of the time, we
want to verify that a DCM or an entire gpplication works with a number of
different configurations of the blackboard and not just with one. To tet a DCM
without AppBuilder, we firs have to modify the contents of the blackboard either
by writing a file that contains the desred contents of the blackboard or by
executing a series of blackboard modification functions DSSTools provides. Then
we should make sure that the modifications we make are error-free. If they contain
arors, the DCM we test will not run properly. In that case, it is not easy to
determine whether the bug is in the DCM or in the modifications we made to the
blackboard. We must repeat these cumbersome steps for each configuration we
want to test the DCM againgt. In AppBuilder, we amply click the Test button after
secting the main file in the project. Then using the Blackboard Window, we can
easly modify the contents of the blackboard. We can even save the changes we
maeke for later use. Since the Blackboard Window does not alow improperly
dructured modifications, we can rest assured that if the DCM does not run
properly, it is the DCM that contains a bug and not the blackboard modification
we made. We can even cregte a knowledge base that contains a desired configura
tion usng AppBuilder’s component managers and builders. To do so, we Ssmply
create a new knowledge base file and insart it into the project. After we have tested
the desred DCM, we can remove the file from the project without affecting other
parts of the project. This is what we did with the Regeneration DSS. We can test
the entire gpplication jus as we would test individua DCMs. Testing a query
screen is dso easer. Once we create a new query screen, we smply click the Test
button to run the query. Without AppBuilder, we would have to cdl a specific
DSSToals routine with proper arguments to test a query screen.

The question whether AppBuilder is complete with respect to DSSTools cannot
be answered with a smple yes or no. AppBuilder dlows us to manage dl the
components of a DSSTools application and it provides tools to build mgor
components of a DSSTools gpplication: facts, rules, and queries. But it does not
provide the same kind of facility for congtructing DCMs. Unlike facts, tools, and .
queries, a DCM does not consst of some definite set of parts that never dter. We
can include anything in a DCM. In the case of the Regeneration DSS, we included
gpecid dgorithms that capture the logic of choosng winners in a regeneration
scenario and we included a custom spreadsheet interface screen. We cannot keep
the open-ended architecture of a toolkit like DSS and dso anticipate every domain
specific task a developer might need to incorporate into an application. So the best
we can do is to build the headers and firgt bits of code for each DCM and provide
text editing screens where the developer can write the rest of the DCM. The

124 G. Kim et al. /Computers and Electronics in Agriculture 27 (2000) 107-125

drength of a toolkit is flexibility, and the drength of an ADE is tha it makes it
eaeder for the developer to do routine tasks. These two goas are not entirely
compatible snce flexibility means making it possble to do what is not routine. The
combination of DSSTools and AppBuilder represent a compromise.

Developers should remember that AppBuilder works only with LPA Win-Prolog.
We ds0 emphasize that AppBuilder inherits dl the limitations of DSSTools. While
DSSTools is designed to support development of knowledge based systems and to
amplify integration of other kinds of DSS tools with a knowledge based system,
neither DSSTools nor AppBuilder provides the tools to develop those additiond
DSS components such as dmulations, databases, or geographicd information

stems.

S‘yTo enhance project management functiondity, we plan to add a printing function
that produces a hard copy of a project and of component files in a project. This will
help developers document their code. In addition, we plan to develop a visud tool
for desgning DCM execution flow. This would enable developers to visudize
sysem behavior and to desgn DCMs more effectivdly. As we mentioned,
DSSTools is open-ended and new tools will be added to it. Hence, AppBuilder will
aso continue to enhance its features to help manage new tools added to DSSTools.

Acknowledgements

The development of AppBuilder for DSSTools was funded by the USDA Forest
Service, Bent Creek Experimenta Forest, Asheville, NC through a cooperdtive
research agreement with the Artificid Intdligence Center of the Universty of
Georgia

References

Covington, M.A., Nute, D., Vellino, A., 1997. Prolog Programming in Depth. Prentice-Hall, Upper
Saddle Rjver, NJ.

Dingeldein, D., Lux, G., 1993. THESEUS + +: a high level user interface toolkit for graphical
applications. Comput. Graphics 17 (2), 147-154.

Eisenstadt, M., Brayshaw, M., 1990a. A knowledge enginecring toolkit — your own knowledge
engineering toolkit for building expert systems. BYTE 15 (10), 268-282.

Eisenstadt, M., Brayshaw, M., 1990b. A knowledge engineering toolkit, part 2 — your own knowledge
engineering toolkit for building expert systems. BYTE 15 (12), 346-370.

Karsai, G., 1995. A configurable visual programming environment: a tool for domain-specific program-~
ming. IEEE Comput. 28 (3), 36-44.

Kim, M.Y., 1996. QA Builder: a visual toolkit for building multimedia knowledge-based systems with
immediate feedback. In: Proceedings of the International Conference on Multimedia Computing and
Systems, Los Alamitos, California. IEEE, pp. 269-273.

Kim, G., 1999, AppBuilder for DSSTools. MS Thesis, Artificial Intelligence Center, University of
Georgia, Athens, GA.

Kim, G., Nute, D., Rauscher, H.M., Maier, F., 2000. DSSTools 2000: A Toolkit for the Development
of Decision Support Systems in Prolog. USDA Forest Service, Southern Research Station, Asheville,
NC, GTR-SRS-XXX in press.

G. Kim et a. / Computers and Electronics in Agriculture 27 (2000) 107-125 125

Koseki, Y., Tanaka, M., Maeda, Y., Koike, Y., 1996. Visual Programming Environment for Hybrid
Expert Systems. Expert Syst. Applications!0(3-4), 481-486.

Loftis, D.L., 1990. Regeneration of southern hardwoods: some ecological concepts. In: Proceedings of
the National Silvicultural Workshop, July 10-13, 1989, Petersburg, AL. US Department of
Agriculture, Forest Service, Washington, DC, pp. 139-143.

Loftis, D.L., Rauscher, H.M., Kim, G., Nute, D.E., Rushton, N., 2000. Regeneration: A Decision
Support System for Predicting Southern Appalachian Hardwood Regeneration. USDA Forest
Service, Southern Research Station, Asheville, NC, GTR-SRS-XXX (in preparation).

LPA Win-Prolog, 1996. Version 3.5. Computer software. Logic Programming Associates.

Nute, D.E., Rauscher, H.M., Zhu, G., Chang, Y., Host, G.E., 1995. A toolkit approach to developing
forest management advisory system in Prolog. Al Applications 9 (3), 39-58.

Pressman, R.S., 1992. Software Engineering: A Practitioner's Approach, third ed. McGraw-Hill, New
York.

Rauscher, H.M., 1999. Ecosystem management decision support for federal forests in the US: a review.
Forest Ecol. Manag. 114, 173-197.

Rauscher, H.M., Host, G.E., 1990. Hypertext and Al: a complementary combination for knowledge
management, Al Applications 4 (3), 56-61.

Rauscher, H.M., Loftis, D.L., McGee, C.E., Worth, C.V., 1997. Oak regeneration: a knowledge
synthesis. Compiler 15 (1), 51-52 insert, three disks, 3.8 megabytes; 748 chunks, 742 links
electronic).

Rei(ss, SP., 1995. The Field Programming Environment: A Friendly Integrated Environment for
Learning and Development. Kluwer, Boston, MA.

Schmoldt, D.L., Rauscher, H.M., 1996. Building Knowledge-Based Systems for Natural Resource
Management. Chapman and Hall, New York.

Teck, R., Moer, M., Eav, B., 1996. Forecasting ecosystems with the forest vegetation simulator. J. For.
94 (12), 7-10.

